\mathcal{L} ight \mathcal{S} top \mathcal{D} ecay in the \mathcal{MSSM}

with \mathcal{M} inimal \mathcal{F} lavour \mathcal{V} iolation

M. Margarete Mühlleitner
Institute of Theoretical Physics (Karlsruhe Institute of Technology)

In collaboration with Eva Popenda

SUSY2011

Aug 28-Sept 2, 2011, Fermilab, USA

Outline

- **⋄** Introduction
- \diamond FCNC decay $ilde{t}_1
 ightarrow c + ilde{\chi}_1^0$
- ♦ One-loop calculation and renormalisation
- **⋄ Numerical analysis**
- **♦ Conclusions**

\mathcal{I} ntroduction

- Precision measurements in flavour physics
 - * in agreement with predictions of the Standard Model (SM)
 - * observed flavour violation can be described by SM Cabibbo-Kobayashi-Maskawa (CKM) matrix
 - ⇒ New Physics (NP) contributions to Flavour Violation strongly constrained
- Minimal Supersymmetric Extension of the SM (MSSM)

in principle many new flavour violating sources

- ⇒ New Physics Flavour Problem
- Minimal Flavour Violation (MFV) provides solution, agrees with precision measurements
 - st sources of flavour and CP violation given by SM structure of the Yukawa couplings \Rightarrow
 - * flavour mixing in NP models governed by CKM matrix \Rightarrow
 - st no flavour changing neutral currents (FCNC) at tree level at $\mu=\mu_{MFV}$

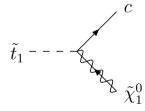
\mathcal{F} lavour \mathcal{C} hanging \mathcal{L} ight \mathcal{S} top \mathcal{D} ecay

ullet Light Stop $ilde{t}_1$

- * arises naturally from renormalization-group running
- * large top Yukawa coupling \leadsto large mass splitting \leadsto light \tilde{t}_1
- * light stop favoured by Baryogenesis

Carena eal; de Carlos, Espinosa; Huet, Nelson; Delepine eal; Losada; Cirigliano eal

ullet FCNC decay $ilde{t}_1 ightarrow c + ilde{\chi}_1^0$



\mathcal{F} lavour \mathcal{C} hanging \mathcal{L} ight \mathcal{S} top \mathcal{D} ecay

ullet Light Stop $ilde{t}_1$

- * arises naturally from renormalization-group running
- * large top Yukawa coupling \leadsto large mass splitting \leadsto light \tilde{t}_1
- * light stop favoured by Baryogenesis

Carena eal; de Carlos, Espinosa; Huet, Nelson; Delepine eal; Losada; Cirigliano eal

ullet FCNC decay $ilde{t}_1 ightarrow c + ilde{\chi}_1^0$

- * in MFV no tree-level coupling \tilde{t}_1 -c- $\tilde{\chi}^0_1$ at μ_{MFV} \Rightarrow decay mediated through charged particle loops
- * suppressed by small CKM matrix elements $\left|V_{cb}\right|=0.04$
- * scenarios with very light \tilde{t}_1 NLSP and $\tilde{\chi}_1^0$ LSP with $m_{\tilde{t}_1} > m_c + m_{\tilde{\chi}_1^0}$ and $m_{\tilde{t}_1} < M_W + m_b + m_{\tilde{\chi}_1^0}$
- $\Rightarrow \tilde{t}_1 \rightarrow c + \tilde{\chi}_1^0$ dominant decay

\mathcal{P} henomenology

• Stop decay length measurements: test minimal flavour violation

Hiller eal

- * MFV and dominant decay $\tilde{t}_1 \to c + \tilde{\chi}_1^0 \leadsto \text{large } \tilde{t}_1$ lifetimes
- $* \, \Rightarrow secondary \ vertices$

\mathcal{P} henomenology

• Stop decay length measurements: test minimal flavour violation

Hiller eal

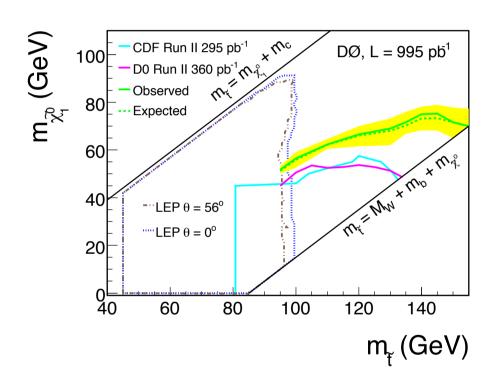
- * MFV and dominant decay $\tilde{t}_1 \to c + \tilde{\chi}_1^0 \leadsto \text{large } \tilde{t}_1$ lifetimes
- $* \Rightarrow$ secondary vertices
- Exclusion limits from Tevatron assume BR($\tilde{t}_1 \to c + \tilde{\chi}_1^0$)=1

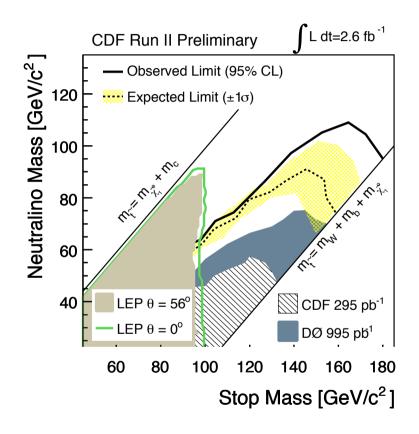
CDF,D0

- * CDF analysis of 2 jets and MET
- * D0 search for stops plus MET

Exclusion Limits

D0 CDF





\mathcal{P} henomenology

• Stop decay length measurements: test minimal flavour violation

Hiller eal

- * MFV and dominant decay $\tilde{t}_1 \to c + \tilde{\chi}_1^0 \leadsto \text{large } \tilde{t}_1$ lifetimes
- * ⇒ secondary vertices
- Exclusion limits from Tevatron assume BR($\tilde{t}_1 \rightarrow c + \tilde{\chi}_1^0$)=1

CDF.D0

- * CDF analysis of 2 jets and MET
- * D0 search for stops plus MET
- Light Stop Search at Tevatron and LHC difficult, but feasible

* Light Stop search at the Tevatron

Das, Datta, Guchait; Bhattacharyya, Datta, Maity; Olive, Rudaz; Demina, Lykken, Matchev, Nomerotski; Han eal; Kats, Shih; ...

* LHC search for light stop

Bornhauser, Drees, Grab, Kim; Johansen, Edsjo, Hellman, Mistead; Han eal; Kraml, Raklev; Battacharyya, Choudhury, Datta; Carena eal; Kats, Shih; Huitu, Leinonen, Laamanen; ...

ullet Approximate formula for $ilde t_1 o c + ilde \chi_1^0$

Hikasa, Kobayashi

Calculation with no FCNC at high-scale $M_P \rightsquigarrow$ decay mediated through charged particle loops. Takes into account only leading log contribution $\sim \ln(M_P^2/M_W^2)$

One Loop Result and Resummation

This work

MM, Popenda JHEP 1104 (2011) 095

- * complete one-loop calculation of $\tilde{t}_1 o c + \tilde{\chi}_1^0$ in MFV
- * full renormalization program, including finite non-logarithmic terms
- ⇒ study importance of neglected non-logarithmic terms
- ullet Resummation of large logarithm $\ln(M_P^2/M_W^2)$
 - * necessary to get reliable result
 - * solution of renormalisation group equations (RGE) for soft SUSY breaking squark masses

Hypothesis of MFV not RGE-invariant

D'Ambrosio, Giudice, Isidori, Strumia

- * RG evolution $\mu_{MFV}
 ightarrow \mu_{EWSB}$ including the complete flavour structure
- $* \Rightarrow$ flavour off-diagonal entries in soft SUSY breaking terms
- * weak interactions affect squark and quark mass matrices differently
- * q and $ilde{q}$ mass matrices cannot be diagonalised simultaneously $\leadsto ilde{t}$ small admixture from $ilde{c}$
- \Rightarrow FCNC coupling $\tilde{t}_1-c-\tilde{\chi}_1^0$ at tree level at any $\mu\neq\mu_{MFV}$

One $\mathcal{L}oop$ $\mathcal{R}esult$ and $\mathcal{R}esummation$

This work

MM, Popenda JHEP 1104 (2011) 095

- * complete one-loop calculation of $\tilde{t}_1 \to c + \tilde{\chi}_1^0$ in MFV
- * full renormalization program, including finite non-logarithmic terms
- ⇒ study importance of neglected non-logarithmic terms
- ullet Resummation of large logarithm $\ln(M_P^2/M_W^2)$
 - * necessary to get reliable result
 - * solution of renormalisation group equations (RGE) for soft SUSY breaking squark masses
- ullet Exact one-loop result: first order in expansion in powers of lpha

$$\underline{\alpha(A_1 \log + A_0)} + \underline{\alpha^2(B_2 \log^2 + B_1 \log + B_0)} + \underline{\alpha^3(C_3 \log^3 + ...)} * ...$$

- Comparison of exact one-loop result and tree-level FV decay
 - ⇒ estimate importance of the resummation effects

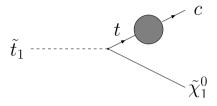
Contributing \mathcal{D} iagrams

ullet $ilde{t}_1
ightarrow c + ilde{\chi}_1^0$ in the framework of MFV (we set $m_c \equiv 0$)

squark self-energies

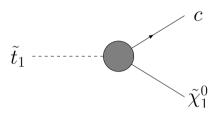
 $ilde{t}_1$ $ilde{c}_L$ $ilde{ ilde{c}_L}$ $ilde{ ilde{\chi}_1^0}$

quark self-energies



 $\sum_{\rm all\ diagrams}\ {
m divergencies}
eq 0$

vertex corrections



Contributing \mathcal{D} iagrams

$$\tilde{c}_L = \begin{array}{c} \tilde{c}_L \\ \tilde{c}_L \\ \tilde{c}_L \end{array} + \begin{array}{c} \tilde{d}_k \\ \tilde{c}_L \\ \tilde{d}_k \end{array} + \begin{array}{c} \tilde{c}_L \\ \tilde{c}_L \end{array} + \begin{array}{c} \tilde{c}_L \\ \tilde{c$$

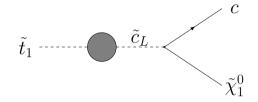
$$t \longrightarrow c = t \longrightarrow_{d_k}^{W} c + t \longrightarrow_{d_k}^{G^{\pm}, H^{\pm}} c + t \longrightarrow_{\tilde{d}_k}^{\tilde{\chi}_j^{+}} c$$

$$\tilde{t}_{1} = \tilde{t}_{1} + \tilde{t}_{1}$$

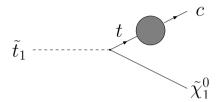
Renormalisation

ullet $ilde{t}_1
ightarrow c + ilde{\chi}_1^0$ in the framework of MFV (we set $m_c \equiv 0$)

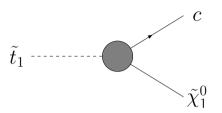
squark self-energies



quark self-energies



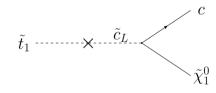
vertex corrections



• Field renormalisation: on-shell scheme

squarks

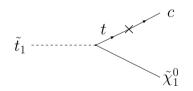
$$\tilde{q}_{st}^0 = (\delta_{st} + \frac{1}{2}\delta\tilde{Z}_{st})\tilde{q}_t$$



$$\hat{\Sigma}_{\tilde{t}_1\tilde{c}_L}(m_{\tilde{t}_1^2}) = 0$$

quarks

$$\tilde{q}_{st}^0 = (\delta_{st} + \frac{1}{2}\delta\tilde{Z}_{st})\tilde{q}_t$$
 $q_i^0 = (\delta_{ik} + \frac{1}{2}\delta Z_{ik})q_k$



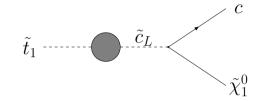
$$\bar{u}(p)\hat{\Sigma}^{tc}(p^2)\Big|_{p^2=0} = 0$$

remaining divergencies

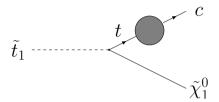
Renormalisation

• $\tilde{t}_1 \to c + \tilde{\chi}_1^0$ in the framework of MFV (we set $m_c \equiv 0$)

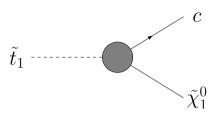
squark self-energies



quark self-energies



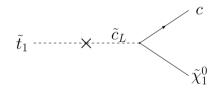
vertex corrections



• Field renormalisation: on-shell scheme

squarks

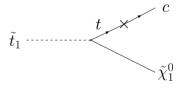
$$\tilde{q}_{st}^0 = (\delta_{st} + \frac{1}{2}\delta\tilde{Z}_{st})\tilde{q}_t$$
 $q_i^0 = (\delta_{ik} + \frac{1}{2}\delta Z_{ik})q_k$



$$\hat{\Sigma}_{\tilde{t}_1\tilde{c}_L}(m_{\tilde{t}_1^2}) = 0$$

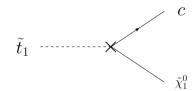
quarks

$$q_i^0 = (\delta_{ik} + \frac{1}{2}\delta Z_{ik})q_k$$



$$\left. \bar{u}(p)\hat{\Sigma}^{tc}(p^2) \right|_{p^2=0} = 0$$

vertex counterterm



\mathcal{R} enormalisation of the \mathcal{M} ixing \mathcal{M} atrices

ullet Diagonalisation of $q, ilde{q}$ mass matrices \leadsto unitary mixing matrices $U, ilde{W}$

$$q_{L,R}^m = U^{q_{L,R}} q_{L,R} \quad (V^{\mathsf{CKM}} = U^{u_L} U^{d_L \dagger}) \qquad \qquad \tilde{q}^m = \tilde{W} \tilde{q}$$

Renormalisation of the mixing matrices

$$U_{ij}^{(0)} = (\delta_{ik} + \delta u_{ik}) U_{kj}^{R} \qquad \tilde{W}_{su}^{(0)} = (\delta_{st} + \delta \tilde{w}_{st}) \tilde{W}_{tu}^{R}$$

impose MFV condition on the renormalised mixing matrices: $\hat{=} U^R, \tilde{W}^R$ flavour-diagonal \Rightarrow

• Mixing matrix counterterms $\delta u, \delta \tilde{w}$:

flavour non-diagonal, anti-hermitian (\leftarrow unitarity of U, \tilde{W})

Denner, Sack

$$\delta u_{ik} = \frac{1}{4} (\delta Z_{ik} - \delta Z_{ki}^*) \qquad \delta \tilde{w}_{st} = \frac{1}{4} (\delta \tilde{Z}_{st} - \delta \tilde{Z}_{ts}^*)$$

• Finite part of counterterm depends on renormalisation scheme

Gambino eal; Kniehl eal; Barroso eal

minimal subtraction: gauge independent MFV condition imposed at μ_{MFV}

Gross, Wilczek; Caswell eal; Kluberg-Stern, Zuber

$$\delta u_{ik} = \frac{1}{4} (\delta Z_{ik}^{\text{div}} - \delta Z_{ki}^{* \text{div}}) \Big|_{p^2 = 0} \qquad \delta \tilde{w}_{st} = \frac{1}{4} (\delta \tilde{Z}_{st}^{\text{div}} - \delta \tilde{Z}_{ts}^{* \text{div}})$$

 \Rightarrow Result depends on MFV scale μ_{MFV}

Result for the \mathcal{D} ecay \mathcal{F} ormula

Decay amplitude

$$\mathcal{M} = ig\bar{u}_c(k_2)(F_L\mathcal{P}_L + F_R\mathcal{P}_R)v_{\tilde{\chi}^0}(k_1)$$

$$F_L \equiv 0 \text{ for } m_c \equiv 0$$

Result for the complete one-loop calculation

$$F_R = \frac{g^2}{16\pi^2} \sqrt{2} \left[\frac{Z_{11}}{6} \tan \theta_W + \frac{Z_{12}}{2} \right] \frac{V_{cb}V_{tb}^* m_b^2 \cos \theta_{\tilde{t}}}{2M_W^2 \cos^2 \beta} \, \frac{m_{c_L}^2 + \mathcal{A}}{m_{\tilde{t}_1}^2 - m_{\tilde{c}_L}^2} \, \log \frac{\mu_{\mathsf{MFV}}^2}{m_{\mathsf{loop}}^2} + \text{finite terms}$$

Result by Hikasa/Kobayashi

$$F_R = \frac{g^2}{16\pi^2} \sqrt{2} \left[\frac{Z_{11}}{6} \tan \theta_W + \frac{Z_{12}}{2} \right] \frac{V_{cb} V_{tb}^* m_b^2 \cos \theta_{\tilde{t}}}{2M_W^2 \cos^2 \beta} \frac{m_{c_L}^2 + \mathcal{A}}{m_{\tilde{t}_1}^2 - m_{\tilde{c}_L}^2} \log \frac{M_P^2}{m_W^2}$$

with
$$\mathcal{A} = -\mu^2 + A_b^2 + M_{\tilde{b}_B}^2 + c_\beta^2 (M_W^2(t_\beta^2 - 1) + M_A^2 t_\beta^2) + m_t A_b \tan \theta_{\tilde{t}}$$

\mathcal{N} umerical \mathcal{A} nalysis

- Numerical analysis: mSUGRA framework
 - * flavour-independent parameters at M_{GUT} : $M_0, M_{1/2}, A_0, \tan \beta, \, \mathrm{sign} \mu$
 - * common $M_{\tilde{q}_L} \leadsto \tilde{u}, \tilde{d}$ mass matrices can be simultaneously flavour-diagonal
 - * scenarios with very light stop: \tilde{t}_1 NLSP, $\tilde{\chi}_1^0$ LSP
 - * mass spectra and mixing angles at EWSB with

SPheno, Porod SoftSUSY, Allanach

• Possible decay modes:

$$\begin{split} \tilde{t}_1 &\to c + \tilde{\chi}_1^0 & \text{dominating} V_{cb} \approx 0.04 \\ \tilde{t}_1 &\to u + \tilde{\chi}_1^0 & \text{suppressed by } V_{ub} \approx 0.003 \\ \tilde{t}_1 &\to \tilde{\chi}_1^0 b f \bar{f} & \text{suppressed due to phase space} \end{split}$$

Comparison with Approximate Result

• Comparison of decay widths: exact one-loop and approximate formula

$$m_{\tilde{t}_1} = 130 \; {\sf GeV} \; , \quad m_{\tilde{\chi}_1^0} = 92 \; {\sf GeV} \; , \quad m_{\tilde{\chi}_1^+} = 175 \; {\sf GeV}$$

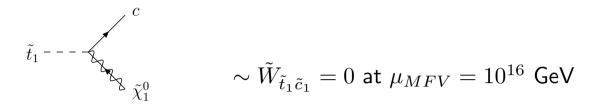
SUSY-HIT Djouadi,MM,Spira

$ F_R^{ extsf{1-loop}} $	$ F_R^{H/K} $	$\Gamma^{ extsf{1-loop}}[GeV]$	$\Gamma^{H/K}[GeV]$
$1.460 \cdot 10^{-4}$	$1.531 \cdot 10^{-4}$	$5.862 \cdot 10^{-9}$	$6.446 \cdot 10^{-9}$

- * difference in exact and approximate decay width: $\mathcal{O}(10\%)$
- * finite terms in exact result contribute to F_R with 3-5%
- * difference in finite terms \Rightarrow 10% effect on Γ
- * difference in branching ratios: negligible

\mathcal{R} esummation \mathcal{E} ffects

• Renormalisation group approach includes resummation of large logarithms



MFV assumption is not RGE invariant and only holds at $\mu=\mu_{MFV}=10^{16}$ GeV Flavour off-diagonal matrix element as a result of RG evolution down to μ_{EWSB} \Rightarrow tree level FCNC decay at EWSB scale

ullet Comparison of one-loop MFV and FV tree-level result: $m_{ ilde{u}_1} pprox m_{ ilde{t}_1}$

$ F_R^{ extsf{1-loop}} $	$ F_R^{\sf FV} $	$\Gamma^{ extsf{1-loop}}[GeV]$	$\Gamma^{\sf FV}[{\sf GeV}]$
$1.460 \cdot 10^{-4}$	$3.306 \cdot 10^{-5}$	$5.862 \cdot 10^{-9}$	$3.006 \cdot 10^{-10}$

\mathcal{B} ranching \mathcal{R} atios

With resummation effects

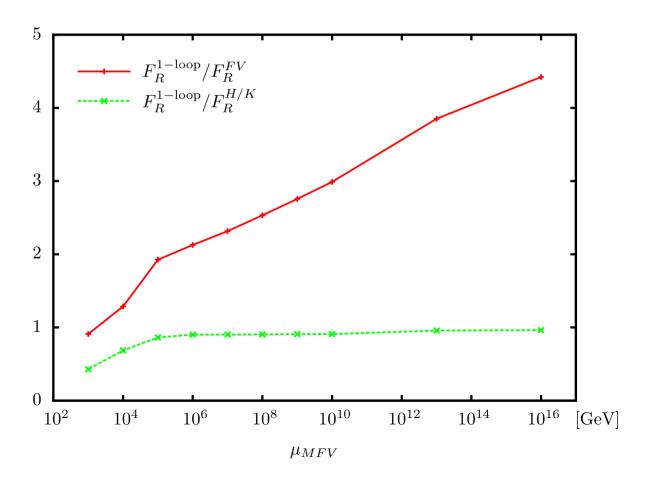
$$ilde t_1 o ilde \chi_1^0 u$$
 resummed flavour off-diagonal matrix element $ilde W_{ ilde u_1 ilde u_L}$ calculation including tree-level FV couplings not available additional contributions expected to be small due to CKM suppression

branching ratio	$BR(\tilde{t}_1 \to \tilde{\chi}_1^0 c)$	$BR(\tilde{t}_1 \to \tilde{\chi}_1^0 u)$	$BR(\tilde{t}_1 o \tilde{\chi}_1^0 b f \bar{f}')$
Exact one-loop	0.9443	0.0053	0.0504
Resummed TL	0.4884	0.0032	0.5084

- 4-body decay width unchanged in both cases
- ullet Branching ratio $ilde t_1 o ilde \chi_1^0 u$ in both cases suppressed by 2 orders of magnitude
- Resummation effects reduce $\Gamma(\tilde{t}_1 o \tilde{\chi}_1^0 c)$ by a factor ~ 20
- \Rightarrow decrease in branching ratio by a factor 1/2
- \Rightarrow Resummation effects are important for large scale $\mu_{MFV} = M_{GUT}$

${\cal A}$ nalyis for different μ_{MFV}

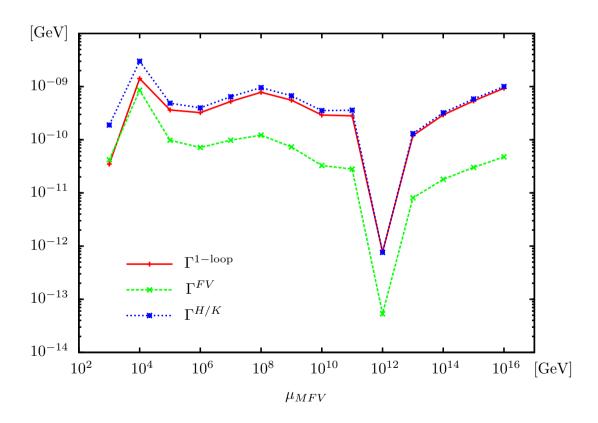
- Different μ_{MFV} : study importance of resummation effects, study quality of approximated result
- Decreasing μ_{MFV} :
- * one-loop MFV result approaches resummed FV tree-level result
- * one-loop MFV result better than approximate formula by Hikasa/Kobayashi
- ullet Numerical analysis: scenarios with different μ_{MFV} but the same mass spectrum



${\cal A}$ nalyis for different μ_{MFV}

- Size of decay width: does not only depend on size of log
- Coefficient of the logarithmic term:

$$\mathcal{A} = -\mu^2 + A_b^2 + M_{\tilde{b}_R}^2 + c_\beta^2 (M_W^2 (t_\beta^2 - 1) + M_A^2 t_\beta^2) + m_t A_b \tan \theta_{\tilde{t}}$$



Small stop decay widths \Rightarrow long lifetimes \Rightarrow secondary vertex

- observation of secondary vertex: strong support for MFV principle
- lifetime measurement: infomation on size of flavour-changing coupling

Summary and Outlook

- Complete one-loop calculation of $\tilde{t}_1 \to c + \tilde{\chi}_1^0$ in MFV including finite terms not dependent on $\log \mu_{MFV}$
- Full renormalisation program including gauge-independent renormalisation of the mixing matrices
- Comparison with existing approximate formula by Hikasa/Kobayashi: difference in partial width $\mathcal{O}(10\%)$ due to finite terms
- Comparison to tree-level decay with RG evolution induced FV coupling
 - * resummation effects important for large μ_{MFV}
 - * big impact on branching ratio
- Next step: one-loop correction to FV tree-level decay
 - ⇒ improve predictions for light stop decay widths and branching ratios

Backup Slides

${\cal B}$ ranching ${\cal R}$ atios with ${\cal E}$ xact ${\cal F}$ ormula

branching ratio	$BR(\tilde{t}_1 \to \tilde{\chi}_1^0 c)$	$BR(\tilde{t}_1 \to \tilde{\chi}_1^0 u)$	$BR(ilde{t}_1 o ilde{\chi}_1^0 b f ar{f}')$
Scenario (1)	0.9944	0.0056	$4.587 \cdot 10^{-5}$
Scenario (2)	0.9443	0.0053	0.0504

- FCNC decay dominates in both scenarios
- ullet Branching ratio $ilde t_1 o ilde \chi_1^0 u$ in both cases suppressed by 2 orders of magnitude
- 4-body decay less important in (1) due to reduced phase space
- Effect on BR of interest only at the percent level

${\mathcal B}$ ranching ${\mathcal R}$ atios - ${\mathcal C}$ omparison ${\mathcal E}$ xact ${\mathcal F}$ ormula and ${\mathsf H}/{\mathsf K}$

$$(1) \quad m_{\tilde{t}_1} = 104 \,\, \mathrm{GeV} \quad m_{\tilde{\chi}_1^0} = 92 \,\, \mathrm{GeV} \quad m_{\tilde{\chi}_1^+} = 175 \,\, \mathrm{GeV}$$

$$(2) \quad m_{\tilde{t}_1} = 130 \,\, \mathrm{GeV} \quad m_{\tilde{\chi}_1^0} = 92 \,\, \mathrm{GeV} \quad m_{\tilde{\chi}_1^+} = 175 \,\, \mathrm{GeV}$$

• Exact 1-loop result:

branching ratio	$BR(\tilde{t}_1 \to \tilde{\chi}_1^0 c)$	$BR(\tilde{t}_1 \to \tilde{\chi}_1^0 u)$	$BR(\tilde{t}_1 o \tilde{\chi}_1^0 b f \bar{f}')$
Scenario (1)	0.9944	0.0056	$4.587 \cdot 10^{-5}$
Scenario (2)	0.9443	0.0053	0.0504

Approximate result by H/K:

branching ratio	$BR(\tilde{t}_1 \to \tilde{\chi}_1^0 c)$	$BR(\tilde{t}_1 \to \tilde{\chi}_1^0 u)$	$BR(ilde{t}_1 o ilde{\chi}_1^0 b f ar{f}')$
Scenario (1)	0.9944	0.0056	$4.\cdot 10^{-5}$
Scenario (2)	0.9486	0.0053	0.0460

${\mathcal B}$ ranching ${\mathcal R}$ atios - ${\mathcal C}$ omparison ${\mathcal E}$ xact and resummed FV TL result

$$(1) \quad m_{\tilde{t}_1} = 104 \,\, \mathrm{GeV} \quad m_{\tilde{\chi}_1^0} = 92 \,\, \mathrm{GeV} \quad m_{\tilde{\chi}_1^+} = 175 \,\, \mathrm{GeV}$$

$$(2) \quad m_{\tilde{t}_1} = 130 \,\, {\rm GeV} \quad m_{\tilde{\chi}_1^0} = 92 \,\, {\rm GeV} \quad m_{\tilde{\chi}_1^+} = 175 \,\, {\rm GeV}$$

• Exact 1-loop result:

branching ratio	$BR(\tilde{t}_1 \to \tilde{\chi}_1^0 c)$	$BR(\tilde{t}_1 \to \tilde{\chi}_1^0 u)$	$BR(\tilde{t}_1 o \tilde{\chi}_1^0 b f \bar{f}')$
Scenario (1)	0.9944	0.0056	$4.587 \cdot 10^{-5}$
Scenario (2)	0.9443	0.0053	0.0504

Resummed FV tree-level result:

branching ratio	$BR(\tilde{t}_1 \to \tilde{\chi}_1^0 c)$	$BR(\tilde{t}_1 \to \tilde{\chi}_1^0 u)$	$BR(ilde{t}_1 o ilde{\chi}_1^0 b f ar{f}')$
Scenario (1)	0.9925	0.0066	$8.956 \cdot 10^{-4}$
Scenario (2)	0.4884	0.0032	0.5084

\mathcal{L} ight \mathcal{S} top \mathcal{S} earches at the LHC

• In events with two *b*-jets and missing energy

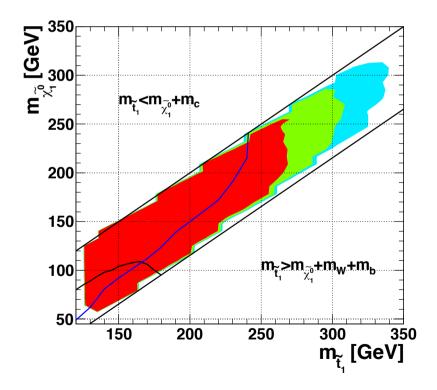
Bornhauser, Drees, Grab, Kim '10

 \triangleright production of $\tilde{t}_1\tilde{t}_1^*b\bar{b}$ including pure QCD and mixed EW-QCD contributions

ightharpoonup production: $pp o ilde{t}_1 ilde{t}_1^* b ar{b}$, decay: $ilde{t}_1 o c + ilde{\chi}_1^0$

ho small $ilde{t}_1 - ilde{\chi}_1^0$ mass splitting $\Rightarrow c$ -jets too soft to be exploited

 \triangleright signature: large missing energy + 2 *b*-jets



\mathcal{M} easurement of \mathcal{F} lavour \mathcal{M} ixing with MFV at the LHC

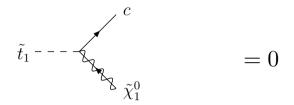
• Establish MFV experimentally: challenging, possible if e.g.

Hiller, Nir, 2008

- ho \tilde{t}_1 is NLSP and $m_{\tilde{t}_1} m_{\tilde{\chi}_1^0} \lesssim b \Rightarrow \tilde{t}_1 \to c + \tilde{\chi}_1^0$ dominates
- ightharpoonup CKM suppression $\leadsto ilde{t}_1$ lifetime is usually long \Rightarrow secondary vertex
- 1) Flavour suppression needed for secondary vertex ← unique to MFV models observation of secondary vertex ⇒ strong support for MFV
- 2) Lifetime measurement → information on size of flavour changing coupling (after higgsino/gaugino decomposition of neutralino & left/right decomposition of stop is known)

\mathcal{T} ree- \mathcal{L} evel \mathcal{C} alculation

ullet MVF no tree-level decay $ilde{t}_1
ightarrow c + ilde{\chi}_1^0$



How do the mixing matrices look like?

Flavour mixing in the SM

$$ar{q}_{Li}m_{ij}q_{Rj}$$
 with $q_{L,R}^m=U^{q_{L,R}}q_{L,R}$ and $q=u,d$

- $\diamond~U_{L,R}^q$ are unitary, $U_{L,R}^{q\dagger}U_{L,R}^q=1$
- $\diamond~U_{L,R}^q$ diagonalise the mass matrix m_{ij} : $U_{Lki}^q m_{ij} U_{Rjm}^{q\dagger} = m_k \delta_{km}$
- \diamond CKM matrix $V^{\mathsf{CKM}} = U^{u_L} U^{d_L \dagger}$
- o no further flavour transitions

\mathcal{T} ree- \mathcal{L} evel \mathcal{C} alculation - cont'd

Flavour and LR mixing in the MSSM

$$\begin{pmatrix} \tilde{u}_1 \\ \tilde{c}_1 \\ \tilde{t}_1 \\ \tilde{u}_2 \\ \tilde{c}_2 \\ \tilde{t}_2 \end{pmatrix} = \begin{pmatrix} \text{squark} \\ \text{mixing} \\ \text{matrix: } \tilde{W} \\ (6 \times 6) \end{pmatrix} \begin{pmatrix} \tilde{u}_L \\ \tilde{c}_L \\ \tilde{t}_L \\ \tilde{u}_R \\ \tilde{c}_R \\ \tilde{t}_R \end{pmatrix} \\ \diamond \tilde{W} \text{ is unitary, } \tilde{W}^\dagger \tilde{W} = 1 \\ \diamond \tilde{W} \text{ diagonalises mass matrix } \tilde{W} M^{\tilde{q}} \tilde{W}^\dagger = M^{\tilde{q}}_{\text{diagonalises mass of flavour violation} \\ \diamond \text{ in general many new sources of flavour violation}$$

Mixing matrix factorises in MFV

$$\tilde{W} = \begin{pmatrix} \cos \tilde{\theta}_{\tilde{q}_i} & -\sin \tilde{\theta}_{\tilde{q}_i} \\ \sin \tilde{\theta}_{\tilde{q}_i} & \cos \tilde{\theta}_{\tilde{q}_i} \end{pmatrix} \begin{pmatrix} U_L^q & 0 \\ 0 & U_R^q = \end{pmatrix} = \underbrace{W}_{\text{flavour diagonal}} \cdot U$$

 \Rightarrow process vanishes at tree-level:

$$\tilde{t}_1 - \cdots$$
 $\tilde{\chi}_1^0$
 $\sim W_{ct} = 0$

\mathcal{R} enormalisation of the \mathcal{S} quark and \mathcal{Q} uark \mathcal{F} ields

• Squark wave function renormalisation constant (OS renormalisation)

$$\delta \tilde{Z}_{\tilde{t}_1 \tilde{c}_L} = \frac{2}{m_{\tilde{c}_L}^2 - m_{\tilde{t}_1}^2} \Sigma_{\tilde{t}_1 \tilde{c}_L} (m_{\tilde{t}_1}^2)$$

• Quark wave function renormalisation constant (OS renormalisation)

$$\delta Z_{tc}^{L*} = \frac{2}{m_t} \Sigma_S^{ct*}(0) \qquad \qquad \delta Z_{tc}^{R*} = \frac{2}{m_t} \Sigma_S^{tc}(0)$$